Advances in the Remote Sensing of Cloud Optical Properties

Michael D. King Laboratory for Atmospheric & Space Physics University of Colorado

- Cloud remote sensing
 - Cloud optical thickness
 - Cloud effective radius
- MODIS observations
 - Cloud optical properties
 - ✓ Surface reflectance impact
 - ✓ Level-3 gridded products
 - Probability density function
 - Cloud optical thickness
 - Cloud effective radius
 - Joint probability density function
 - Cloud optical thickness & cloud effective radius
 - Cloud top pressure & cloud optical thickness

Cloud Optical & Microphysical Properties (M. D. King and S. Platnick)

Pixel-level cloud product during daytime at 1 km

- Daytime defined as $\theta_0 < 81.4^\circ$ to be consistent with cloud mask
- > Critical input (especially for global processing):
 - Cloud mask: to retrieve or not to retrieve?
 - Cloud thermodynamic phase: liquid water or ice libraries?
 - Cloud top temperature, ancillary surface temperature: needed for 3.74 μm emission characterization (band contains solar and emissive signal), T(sfc) from NCEP, Reynolds SST
 - Atmospheric correction: requires cloud top pressure, ancillary information regarding atmospheric moisture & temperature (e.g., NCEP, other MODIS products)
 - Surface albedo: for land, ancillary information regarding snow/ice extent (e.g., NISE)

Retrieval of τ_c and r_e (T. Nakajima and M. D. King)

Cloud Optical Properties

- The reflection function of a nonabsorbing band (e.g., 0.75 µm) is primarily a function of optical thickness
- The reflection function of a near-infrared absorbing band (e.g., 2.16 µm) is primarily a function of effective radius
 - clouds with small drops (or ice crystals) reflect more than those with large particles
- For optically thick clouds, there is a near orthogonality in the retrieval of τ_c and r_e using a visible and near-infrared band

Nakajima and King (1990) King et al. (1992)

Cloud Optical & Microphysical Retrievals Retrieval space examples

Liquid water cloud ocean surface Ice cloud ocean surface

Cloud Optical & Microphysical Retrievals Retrieval space examples

Liquid water cloud ocean surface Liquid water cloud ice surface

Terra/MODIS Cloud Thermodynamic Phase (M. D. King, S. Platnick, J. Riedi et al. – NASA GSFC, U. Lille)

True Color Composite (0.65, 0.56, 0.47)

March 22, 2001

Thermodynamic Phase

Clear Sky Liquid water

ter Ice

Uncertain

Collection 5

Conditioned MODIS Surface Albedo Maps $\lambda = 0.858 \ \mu m$

a) January 1-16, 2002

c) July 12-27, 2002

d) September 30-October 14, 2002

Spatially Complete Surface Albedo Maps $\lambda = 0.858 \ \mu m$

a) January 1-16, Climatology

c) July 12-27, Climatology

b) April 3-18, Climatology

d) September 30-October 14, Climatology

Moody et al. (2005) Moody et al. (2008) 0.0 0.1 0.2 0.3 0.4 0.5 Surface Albedo (0.86 μm)

Snow Albedo by IGBP Ecosystem (E. G. Moody, M. D. King, C. B. Schaaf, D. K. Hall, S. Platnick)

Cloud Optical Thickness and Effective Radius (M. D. King, S. Platnick – NASA GSFC)

Cloud Optical Thickness

Cloud Effective Radius (µm)

Water Clouds

Monthly Mean Cloud Fraction by Phase (M. D. King, S. Platnick et al. – NASA GSFC)

July 2006 (Collection 5) Terra

- Liquid water clouds
 - Marine stratocumulus regions
 - ✓ Angola/Namibia
 - ✓ Peru/Ecuador
 - ✓ California/Mexico
- Ice clouds
 - Tropics
 - Indonesia & western tropical
 Pacific
 - ✓ ITCZ
 - Roaring 40s

Cloud Fraction

Monthly Mean Cloud Optical Thickness (M. D. King, S. Platnick et al. – NASA GSFC)

July 2006 (**Collection 5**) Terra (**QA Mean**)

- Liquid water clouds
 - Marine stratocumulus $\tau_c \sim 15$
 - Higher optical thickness over land than ocean
 - Cloud optical thickness near5 in Indian Ocean
 - High optical thickness around roaring 40s
- Ice clouds
 - Larger in tropics (ITCZ)
 - High where deep convection occurs
 - Congo basin
 - Amazon basin
 - High optical thickness around roaring 40s
 - Higher over land than ocean

Cloud Optical Thickness (Ice)

Monthly Mean Cloud Effective Radius (M. D. King, S. Platnick et al. – NASA GSFC)

July 2006 Terra (**QA Mean**)

- Liquid water clouds
 - Larger drops in SH than NH
 - Larger drops over ocean than land
 - Due to cloud condensation nuclei (aerosols)
- Ice clouds
 - Larger in tropics than high latitudes
 - ✓ Anvils
 - Small ice crystals at top of deep convection

Probability Distribution of Cloud Effective Radius (M. D. King, S. Platnick et al. – NASA GSFC)

Probability Distribution of Cloud Optical Thickness (M. D. King, S. Platnick et al. – NASA GSFC)

$\begin{array}{c} \text{MODIS} \ \tau_c \ \text{vs } r_e \ \text{Joint Histograms} \\ \text{Liquid Water Clouds over Ocean} \end{array}$

MODIS and ISCCP-like τ_c vs p_c Joint Histograms

Summary and Conclusions

- Remote sensing of cloud optical thickness, effective radius, and integrated water path
 - Enabled by airborne multispectral measurements of cloud reflectance obtained by the MCR onboard the ER-2 aircraft during FIRE II marine stratocumulus experiment
 - Carefully chosen spectral bands
 - ✓ In situ airborne observations for comparison

> Key publications that have had a long and influential role in cloud remote sensing

- Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 1878-1893. [397 citations]
- Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. *IEEE Trans. Geosci. Remote Sens.*, **41**, 459-473. [396 citations]
- King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanré et al., 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. *IEEE Trans. Geosci. Remote Sens.*, **41**, 442-458. [271 citations]

Dr. Didier Tanré

Radiative transfer, aerosol remote sensing, colleague, & friend

Didier Maryland, 1989

MODIS Science Team, 1996